Showing posts with label Earth's atmosphere. Show all posts
Showing posts with label Earth's atmosphere. Show all posts

Friday, November 27, 2015

Images of Comet Catalina with her twin tails captured by amateur Astonomer , Chris Schur of Arizona.



Phys.org

Comet Catalina grows two tails, soars at dawn

November 23, 2015 by Bob King, Universe Today
 
Comet C/2013 US10 Catalina shows off a compact green coma and two tails in this photo taken this morning (Nov. 22, 2015) at dawn from Arizona. The green color comes from carbon compounds fluorescing in UV sunlight. Credit: Chris Schur 
 
Amateur astronomer Chris Schur of Arizona had only five minutes to observe and photograph Comet Catalina this morning before twilight got the better of the night. In that brief time, he secured two beautiful images and made a quick observation through his 80mm refractor. He writes:
"Very difficult observation on this one. (I observed) it visually with the 35mm Panoptic ocular. It was a round, slightly condensed object with no sign of the twin tails that show up in the images. After five minutes, we lost it visually as it was 2° degrees up in bright twilight. Images show it for a longer time and a beautiful emerald green head with two tails forming a Y shaped fan."
North is up and east to the left in these two photos of the comet made by Dr. D.T. Durig at 6:23 a.m. EST on Nov. 21st from Cordell-Lorenz Observatory in Sewanee, Tenn. He estimated the coma diameter at ~2 arc minutes with a tail at least …


Read more at: http://phys.org/news/2015-11-comet-catalina-tails-soars-dawn.html#jCp
Schur estimated the comet's brightness at around magnitude +6. What appears to be the dust extends to the lower right (southeast) with a narrower ion tail pointing north. With its twin tails, I'm reminded of a soaring eagle or perhaps a turkey vulture rocking back and forth on its wings. While they scavenge for food, Catalina soaks up sunlight.

I also headed out before dawn for a look. After a failed attempt to spot the new visitor on Saturday, I headed down to the Lake Superior shoreline at 5:30 a.m. today and waited until the comet rose above the murk. Using 7×50 binoculars in a similar narrow observing window, I could barely detect it as a small, fuzzy spot 2.5° south of 4th magnitude Lambda Virginis at 5:50 a.m. 10 minutes after the start of astronomical twilight. The camera did better!



Read More Here

Thursday, November 5, 2015

It Rains Fireballs - Earth is Passing Through a Stream of Debris from Comet Encke

nemesis maturity

Tuesday, April 22, 2014

Plugging an ozone hole : Ozone levels in the Arctic haven’t yet sunk to the extreme lows seen in Antarctica.

OZONE NEWS

Plugging an ozone hole


by Staff Writers
Boston MA (SPX) Apr 17, 2014


File image.
Since the discovery of the Antarctic ozone hole, scientists, policymakers, and the public have wondered whether we might someday see a similarly extreme depletion of ozone over the Arctic.
But a new MIT study finds some cause for optimism: Ozone levels in the Arctic haven't yet sunk to the extreme lows seen in Antarctica, in part because international efforts to limit ozone-depleting chemicals have been successful.
"While there is certainly some depletion of Arctic ozone, the extremes of Antarctica so far are very different from what we find in the Arctic, even in the coldest years," says Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at MIT, and lead author of a paper published this week in the Proceedings of the National Academy of Sciences.
Frigid temperatures can spur ozone loss because they create prime conditions for the formation of polar stratospheric clouds. When sunlight hits these clouds, it sparks a reaction between chlorine from chlorofluorocarbons (CFCs), human-made chemicals once used for refrigerants, foam blowing, and other applications - ultimately destroying ozone.
A success story of science and policy
After the ozone-attacking properties of CFCs were discovered in the 1980s, countries across the world agreed to phase out their use as part of the 1987 Montreal Protocol treaty. While CFCs are no longer in use, those emitted years ago remain in the atmosphere.

Read More Here

.....

Massachusetts Institute of Technology


An aerial view of clouds over a mountain range in Greenland.
Courtesy of Michael Studinger/NASA Earth Observatory
Full Screen
Courtesy of Michael Studinger/NASA Earth Observatory

.

An Arctic ozone hole? Not quite

MIT researchers find that the extremes in Antarctic ozone holes have not been matched in the Arctic.
Audrey Resutek | Joint Program on the Science and Policy of Global Change
April 14, 2014
Since the discovery of the Antarctic ozone hole, scientists, policymakers, and the public have wondered whether we might someday see a similarly extreme depletion of ozone over the Arctic.
But a new MIT study finds some cause for optimism: Ozone levels in the Arctic haven’t yet sunk to the extreme lows seen in Antarctica, in part because international efforts to limit ozone-depleting chemicals have been successful.
“While there is certainly some depletion of Arctic ozone, the extremes of Antarctica so far are very different from what we find in the Arctic, even in the coldest years,” says Susan Solomon, the Ellen Swallow Richards Professor of Atmospheric Chemistry and Climate Science at MIT, and lead author of a paper published this week in the Proceedings of the National Academy of Sciences.
Frigid temperatures can spur ozone loss because they create prime conditions for the formation of polar stratospheric clouds. When sunlight hits these clouds, it sparks a reaction between chlorine from chlorofluorocarbons (CFCs), human-made chemicals once used for refrigerants, foam blowing, and other applications — ultimately destroying ozone.
'A success story of science and policy'
After the ozone-attacking properties of CFCs were discovered in the 1980s, countries across the world agreed to phase out their use as part of the 1987 Montreal Protocol treaty. While CFCs are no longer in use, those emitted years ago remain in the atmosphere. As a result, atmospheric concentrations have peaked and are now slowly declining, but it will be several decades before CFCs are totally eliminated from the environment — meaning there is still some risk of ozone depletion caused by CFCs.

Read More Here

.....
OZONE NEWS

NASA Pinpoints Causes of 2011 Arctic Ozone Hole


by Maria-Jose Vinas for NASA's Earth Science News Greenbelt MD (SPX) Mar 13, 2013


Maps of ozone concentrations over the Arctic come from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The left image shows March 19, 2010, and the right shows the same date in 2011. March 2010 had relatively high ozone, while March 2011 has low levels. Credit: NASA/Goddard.
A combination of extreme cold temperatures, man-made chemicals and a stagnant atmosphere were behind what became known as the Arctic ozone hole of 2011, a new NASA study finds. Even when both poles of the planet undergo ozone losses during the winter, the Arctic's ozone depletion tends to be milder and shorter-lived than the Antarctic's.
This is because the three key ingredients needed for ozone-destroying chemical reactions -chlorine from man-made chlorofluorocarbons (CFCs), frigid temperatures and sunlight- are not usually present in the Arctic at the same time: the northernmost latitudes are generally not cold enough when the sun reappears in the sky in early spring. Still, in 2011, ozone concentrations in the Arctic atmosphere were about 20 percent lower than its late winter average.
The new study shows that, while chlorine in the Arctic stratosphere was the ultimate culprit of the severe ozone loss of winter of 2011, unusually cold and persistent temperatures also spurred ozone destruction. Furthermore, uncommon atmospheric conditions blocked wind-driven transport of ozone from the tropics, halting the seasonal ozone resupply until April.
"You can safely say that 2011 was very atypical: In over 30 years of satellite records, we hadn't seen any time where it was this cold for this long," said Susan E. Strahan, an atmospheric scientist at NASA Goddard Space Flight Center in Greenbelt, Md., and main author of the new paper, which was recently published in the Journal of Geophysical Research-Atmospheres.
"Arctic ozone levels were possibly the lowest ever recorded, but they were still significantly higher than the Antarctic's," Strahan said. "There was about half as much ozone loss as in the Antarctic and the ozone levels remained well above 220 Dobson units, which is the threshold for calling the ozone loss a 'hole' in the Antarctic - so the Arctic ozone loss of 2011 didn't constitute an ozone hole."
The majority of ozone depletion in the Arctic happens inside the so-called polar vortex: a region of fast-blowing circular winds that intensify in the fall and isolate the air mass within the vortex, keeping it very cold.

Read More Here

.....
Enhanced by Zemanta

Monday, January 27, 2014

EGU Press Release: Ancient forests stabilised Earth’s CO2 and climate

European Geosciences Union (EGU)

23 January 2014


Mineral weathering by fungi
Mineral weathering by fungi (Credit: Joe Quirk)
UK researchers have identified a biological mechanism that could explain how the Earth’s atmospheric carbon dioxide and climate were stabilised over the past 24 million years. When CO2 levels became too low for plants to grow properly, forests appear to have kept the climate in check by slowing down the removal of carbon dioxide from the atmosphere. The results are now published in Biogeosciences, an open access journal of the European Geosciences Union (EGU).
“As CO2 concentrations in the atmosphere fall, the Earth loses its greenhouse effect, which can lead to glacial conditions,” explains lead-author Joe Quirk from the University of Sheffield. “Over the last 24 million years, the geologic conditions were such that atmospheric CO2 could have fallen to very low levels – but it did not drop below a minimum concentration of about 180 to 200 parts per million. Why?”
Before fossil fuels, natural processes kept atmospheric carbon dioxide in check. Volcanic eruptions, for example, release CO2, while weathering on the continents removes it from the atmosphere over millions of years. Weathering is the breakdown of minerals within rocks and soils, many of which include silicates. Silicate minerals weather in contact with carbonic acid (rain and atmospheric CO2) in a process that removes carbon dioxide from the atmosphere. Further, the products of these reactions are transported to the oceans in rivers where they ultimately form carbonate rocks like limestone that lock away carbon on the seafloor for millions of years, preventing it from forming carbon dioxide in the atmosphere.
Forests increase weathering rates because trees, and the fungi associated with their roots, break down rocks and minerals in the soil to get nutrients for growth. The Sheffield team found that when the CO2 concentration was low – at about 200 parts per million (ppm) – trees and fungi were far less effective at breaking down silicate minerals, which could have reduced the rate of CO2 removal from the atmosphere.
“We recreated past environmental conditions by growing trees at low, present-day and high levels of CO2 in controlled-environment growth chambers,” says Quirk. “We used high-resolution digital imaging techniques to map the surfaces of mineral grains and assess how they were broken down and weathered by the fungi associated with the roots of the trees.”
As reported in Biogeosciences, the researchers found that low atmospheric CO2 acts as a ‘carbon starvation’ brake. When the concentration of carbon dioxide falls from 1500 ppm to 200 ppm, weathering rates drop by a third, diminishing the capacity of forests to remove CO2 from the atmosphere.
The weathering rates by trees and fungi drop because low CO2 reduces plants’ ability to perform photosynthesis, meaning less carbon-energy is supplied to the roots and their fungi. This, in turn, means there is less nutrient uptake from minerals in the soil, which slows down weathering rates over millions of years.
“The last 24 million years saw significant mountain building in the Andes and Himalayas, which increased the amount of silicate rocks and minerals on the land that could be weathered over time. This increased weathering of silicate rocks in certain parts of the world is likely to have caused global CO2 levels to fall,” Quirk explains. But the concentration of CO2 never fell below 180-200 ppm because trees and fungi broke down minerals at low rates at those concentrations of atmospheric carbon dioxide.
“It is important that we understand the processes that affect and regulate climates of the past and our study makes an important step forward in understanding how Earth’s complex plant life has regulated and modified the climate we know on Earth today,” concludes Quirk.

Press Release Page Link


More information

This research is presented in the paper ‘Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline’ published in the EGU open access journal Biogeosciences on 23 January 2014.


Full citation: Quirk, J., Leake, J. R., Banwart, S. A., Taylor, L. L., and Beerling, D. J.: Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline, Biogeosciences, 11, 321-331, doi:10.5194/bg-11-321-2014, 2014.


The team is composed of J. Quirk, J. R. Leake, S. A. Banwart, L. L. Taylor and D. J. Beerling, from the University of Sheffield, UK.


Dr. Joe Quirk
Post Doctoral Research Associate
Department of Animal and Plant Sciences
University of Sheffield, UK
Tel: +44 (0)114 22 20093
Email: j.quirk@sheffield.ac.uk
Prof. David Beerling (Principal Investigator)
Department of Animal and Plant Sciences
University of Sheffield, UK
Tel: +44 (0)114 22 24359
Email: d.j.beerling@sheffield.ac.uk
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Email: media@egu.eu
Enhanced by Zemanta